BUNCH RACHIS RECONSTRUCTION FROM A SINGLE IMAGE

DR MARK WHITTY
m.whitty@unsw.edu.au
Berry Counting and Bunch Reconstruction (Dr Scarlett Liu)

<table>
<thead>
<tr>
<th>Harvest stage</th>
<th>Berry Counting Accuracy [%] across 120 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>40A (CHA)</td>
<td>98.5</td>
</tr>
<tr>
<td>47A (SHI)</td>
<td>91</td>
</tr>
<tr>
<td>B12 (CHA)</td>
<td>98.3</td>
</tr>
</tbody>
</table>

BUNCH ARCHITECTURE (BOLAI XIN)
BUNCH ARCHITECTURE (Bolai Xin)

(a) Attenuation curve fitting for rachis internode, twig internode (b), sub-twig internode (c)

BUNCH ARCHITECTURE (BOLAI XIN)

Bunch Architecture (Bolai Xin)

<table>
<thead>
<tr>
<th>Overall length error</th>
<th>Rachis internodes [% error]</th>
<th>Secondary internodes [% error]</th>
<th>Tertiary internodes [% error]</th>
<th>Pedicels [% error]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schöler (2015)</td>
<td>-</td>
<td>29.6</td>
<td>-11.1</td>
<td>21.3</td>
</tr>
<tr>
<td>Proposed approach</td>
<td>3.5</td>
<td>14.6</td>
<td>-1.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

BUNCH ARCHITECTURE (BOLAI XIN)
RACHIS RECONSTRUCTION (Yiwei Han)
FLOWER COUNTING

Liu S; Li X; Wu H; Xin B; Tang J; Petrie P; Whitty M, 2018, 'A robust automated flower estimation system for grape vines', Biosystems Engineering, vol. 172, pp. 110 - 123, http://dx.doi.org/10.1016/j.biosystemseng.2018.05.009
RAPID + NON-DESTRUCTIVE MATUREITY ESTIMATION
BY MULTISPECTRAL SENSING (JULIE TANG)
Vine Water Stress

Smart Robotic Viticulture Tools

This app is compatible with all of your devices.

\[CWSI = \frac{T_{\text{canopy}} - T_{\text{wet}}}{T_{\text{dry}} - T_{\text{wet}}} \]

Mark Whitty
http://www.robotics.unsw.edu.au/srv/
Remote Sensing of Non-Productive Vine Canopy

<table>
<thead>
<tr>
<th>Block</th>
<th>Ground-truth</th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>40A (2015)</td>
<td>3.77%</td>
<td>3.47%</td>
</tr>
<tr>
<td>47A (2015)</td>
<td>18.48%</td>
<td>17.29%</td>
</tr>
<tr>
<td>40A (2016)</td>
<td>6.00%</td>
<td>5.52%</td>
</tr>
<tr>
<td>47A (2016)</td>
<td>6.74%</td>
<td>5.33%</td>
</tr>
</tbody>
</table>

Microscope Image Analysis (Luke Millstead)
Liu S; Whitty M. 2015, 'Automatic grape bunch detection in vineyards with an SVM classifier', *Journal of Applied Logic*, vol. 13, pp. 643 - 653, http://dx.doi.org/10.1016/j.jal.2015.06.001
YIELD ESTIMATION AND MAP GENERATION

Mark Whitty
http://www.robotics.unsw.edu.au/srv/
UNSUPERVISED FEATURE SELECTION AND CLASSIFICATION

Vine Structure From GoPro Video – Annie Wang
VARIABLE RATE SPRAYER FOR APPLE FLOWER THINNING

Mark Whitty
http://www.robotics.unsw.edu.au/srv/

School of Mechanical and Manufacturing Engineering
UNSW Australia
Thank you!

Thanks to Treasury Wine Estates, See Saw Wines for providing validating data. Special thanks to Paul Petrie, Angus Davidson and Justin Jarrett for supporting this research. Funding for the Yield Estimation and Vine Water Stress projects has been provided by Wine Australia. Funding for the Variable Rate Sprayer project has been provided by Horticulture Innovation Australia.

Contact:
Dr Mark Whitty
m.whitty@unsw.edu.au

Smart Robotic Viticulture
Paper list

PETRIE PR; WANG Y; LIU S; LAM S; WHITTY MA; SKEWES MA, 2019, 'The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status', *Biosystems Engineering*, vol. 179, pp. 126 - 139, [HTTP://dx.doi.org/10.1016/j.biosystemseng.2019.01.002](http://dx.doi.org/10.1016/j.biosystemseng.2019.01.002)

LIU S; LI X; WU H; XIN B; TANG J; PETRIE P; WHITTY M, 2018, 'A robust automated flower estimation system for grape vines', *Biosystems Engineering*, vol. 172, pp. 110 - 123, [HTTP://dx.doi.org/10.1016/j.biosystemseng.2018.05.009](http://dx.doi.org/10.1016/j.biosystemseng.2018.05.009)

JAYAKODY H; LIU S; WHITTY M; PETRIE P, 2017, 'Microscope image based fully automated stomata detection and pore measurement method for grapevines', *Plant Methods*, vol. 13, [HTTP://dx.doi.org/10.1186/s13007-017-0244-9](http://dx.doi.org/10.1186/s13007-017-0244-9)

LIU S; COSSELL S; TANG J; DUNN G; WHITTY M, 2017, 'A computer vision system for early stage grape yield estimation based on shoot detection', *Computers and Electronics in Agriculture*, vol. 137, pp. 88 - 101, [HTTP://dx.doi.org/10.1016/j.compag.2017.03.013](http://dx.doi.org/10.1016/j.compag.2017.03.013)
Paper list

Whitty M;Liu S;Cossell S;Jayakody H;Woods M;Tang J;Singh S;van Kerk Oerle P;Wiseham D;Liu S;Davidson A;Stocco T;Jarrett J;Jarrett P;Wotton C;Shepherd J;Lim S;Petrie PR;Dunn G, 2017, Improved yield prediction for the Australian wine industry, Wine Australia, Adelaide, South Australia, DPI1401, https://www.wineaustralia.com/au/research/search/completed-projects/dpi-1401

Cossell S;Whitty M;Liu S;Tang J, 2016, 'Spatial Map Generation from Low Cost Ground Vehicle Mounted Monocular Camera', in *IFAC PAPERSONLINE*, ELSEVIER SCIENCE BV, Seattle, WA, pp. 231 - 236, presented at 5th IFAC Conference on Sensing, Control and Automation Technologies for Agriculture (AGRICONTROL), Seattle, WA, 14 - 17 August 2016, http://dx.doi.org/10.1016/j.ifacol.2016.10.043

Liu S;Whitty M, 2015, 'Automatic grape bunch detection in vineyards with an SVM classifier', *Journal of Applied Logic*, vol. 13, pp. 643 - 653, http://dx.doi.org/10.1016/j.jal.2015.06.001

Liu S;Tang J;Cossell S;Whitty M, 2015, 'Detection of shoots in vineyards by unsupervised learning with over the row computer vision system', in *Australasian Conference on Robotics and Automation, ACRA*

Paper list

Liu S; Marden S; Whitty M, 2013, 'Towards automated yield estimation in viticulture', in Australasian Conference on Robotics and Automation, ACRA